重力異常からみた滋賀県北部の地下構造について

西田潤一

はじめに

地震の原因として断層運動が広く注目されるようになってきた。地震の原因としては新断層の出現も稀にはあるが、ほとんどの場合には既存の断層面の再動であることも確認されている。平成7年1月に起きた阪神大震災においては、淡路島に野鳥断層が出現したことは記憶に新しい。野鳥断層は六甲断層群の延長としてそれ以前から知られていた（活断層研究会，1980，1991）。地震の起きる可能性と災害予防の観点から、活断層の調査が精力的に行われている。

活断層調査の方法として地形地質調査、弾性波探査、ボーリング及びトレンチ等の方法が広く用いられている。これらは大きく分けて活断層の分布を調べるものと、存在のわかった活断層の活動周期を推定するものに分けることができるだろう。

活断層の分布については活断層の定義が「過去200万年間に活動したことのある断層」であることから、断層崖あるいは段丘のような地形として、また直接断層露頭で観察できる。しかしこれらの方法は山地あるいは丘陵のような場所での観察が必要であり、厚い堆積物に覆われた平野部では活断層の直接観察ができない事が指摘できる。このような平野部では、何らかの物理探査の手法で活断層の存在を推定する必要がある。地下の潜在活断層の調査の方法としては、地表面の重力異常の分布（西田・他，1991，Nakagawa et. al., 1991）や地下の比抵抗分布（西田，1992）を用いる方法がよく用いられている。

西南日本の中央構造線以北は、太平洋プレートの運動に伴う東西圧縮応力場のために、図1に示されるようないくつかの主要な活断層ないしは潜在活
図1
近畿北部のテクトニックブロック及び主要な活断層の分布図。
テクトニックブロック HO; 北陸ブロック MA; 舞鶴ブロック TA; 丹波ブロック BI; 琵琶湖ブロック NA; 奈良ブロック OS; 大阪ブロック HA; 播磨ブロック
主要活断層 STL; 三田－山崎構造線 YSF; 山崎断層 UTF;
右手断層 ATL; 有馬－高槻構造線 JMF; 十万辻断層 RKF; 六甲断層 TTF; 高塚山断層 YGF; 八木断層 YBF;
養父断層 MTF; 三崎断層 NYF; 西山断層 YDF; 山田断層 HOF; 花折断層 MKF; 三方断層 IKF; 生駒断層 KZF; 木津川断層 TGF; 朝倉断層 SFK; 鈴鹿断層 FWF; 藤原断層 YNF; 柳ヶ瀬断層 YRF; 養老断層 ISF; 伊勢湾断層 MTL;
中央構造線

断層によって境される、テクトニックな単元に分けることができると考えられる（桂・他，1987, 茂木・他, 1985, Mogi et al., 1991）。この考えでは琵琶湖を中心とする近江盆地は琵琶湖ブロックと定義される。琵琶湖ブロックは東は柳ヶ瀬断層、養老断層、藤原断層に、南は木津川断層に、西は花折－三方断層に囲まれる三角形のブロックと定義できる。
琵琶湖周辺の重力異常については, Tsuboi et al., (1954), Hagiwara(1967),
Nishida et al. (1990) の研究がある。Nishida et al. (1990) は琵琶湖底及び近江盆地にまたがる、それまでの重力測定結果をまとめて詳細な重力異常図を報告している。この報告で彼らは琵琶湖中央部における大きな負異常の存在と、琵琶湖を取り巻くように重力異常の急変する部分がある事を指摘している。彼らは琵琶湖中央部の負異常の原因を、琵琶湖底に堆積している湖底堆積物の低密度と琵琶湖ブロックの基盤の沈降ないしは破砕による低密度によるものと考えた。また琵琶湖ブロック自体も、いくつかの断層によって切られているものと考えた。

重力異常から断層モデルを考える場合には、異なった密度の岩体ないしは堆積層を仮定し、得られた重力異常の分布を説明するモデルを作るのが普通である。地下深くの断層の延長が、地表に達しているとき必ずしも一本の断層線として現れない。実際この地域において地表から観察される断層は、饗庭野断層、酒波断層のように別の断層として記載されている。西田 (1992) は ELFMT 探査の結果から今津町北方の平野部において、饗庭野断層および酒波断層の延長を推定している。この結果からはこの 2 本の断層は、地表近傍では異なった断層のように見えるが、今べたのように地下深部では一本の断層であると推定される。

そこでこの地域のブーゲー異常図から、饗庭野断層・酒波断層を生じたと考えられる地下構造について考察してみたい。

ブーゲー異常から推定される活断層

図 2 には Nishida et al. (1990) によって求められた琵琶湖周辺のブーゲー異常図の北半分を示す。ここで等重力異常線の間隔は陸上では 2mgal であり、湖の中では 5mgal である。

地下深部に断層があり、その断層面を境として異なった密度の岩体が接触しているときには、その境界面上においては等重力異常線は急激に変化する。図 2 にはいくつかの等重力異常線の混んだ帯状の地域がみられる。このような重力異常の急変部の地下には、密度の不連続すなわち断層構造が考えられる。ここでこれまでに報告されている地表の活断層、段丘面のような情報をすべて無視して、このような重力急変部のみから断層を推定するなら、どのような断層が考えられるだろうか。図 2 にはこのようにして推定された断層線を書き入れてある。また図 3 には「日本の活断層（活断層研究会, 1991）」
滋賀県北部のブーゲ異常図と推定される断層（Nishida et al. 1990
に加筆）等重力異常線は陸上部では 2 mgal, 狩猟湖中では 5 mgal。黒
丸は測定点。太い黒線は重力異常のみから推定される断層線。

に記載されている大きな断層線を示した。

重力異常の分布から推定される断層線の存在位置は、次のようなものであ
る。まず北の方から余呉湖の北東を図 2 の A-A' に示されるような NW-SE
方向に走る断層が推定され、この断層の位置はほぼ柳ヶ瀬断層の位置と一致
する。しかしながら図 3 にある地表で確認されている柳ヶ瀬断層とは、その
走行方向に少し違いがある。

また西浅井町の西部から敦賀に向かう断層線（B-B'）が推定されるが、活
断層研究会の図では直線的な南北断層ではなくて、多くの断層が記載され
ている。次に今津町の西側合木村から北にのびる断層（C-C'）が推定でき
るが、これはよく知られている花折断層にほぼ一致する。

今津町周辺には南北に等重力異常線が混んでおり、ここに南北に大きな断
層（D-D'）が推定できる。ここには今津町の西側の響庭野丘陵との境に、
響庭野断層が知られている。この断層は今津町北の平野部では確認できず、
その北側では南北に走る酒波断層として確認されている。西田（1992）は
ELFMT 探査の結果から讃庭野断層、酒波断層の延長が、平野部の地下でみられるのことを確認したが、それらは必ずしも一致していないことを報告している。

重力異常図の等重力線からは断層構造の存在が考えられるが、地表にみられる断層とよく一致しないケースとしては、図2のマキノ町からほぼ東西に走る構造（E-E'）と高月町から長浜に向かう南北の構造（F-F'）があげられる。F-F'の近傍には、琵琶湖中の東岸湖底断層が湖底段丘から推定されている。しかしこれらの位置及び方向が必ずしも一致しない。ただしこの点に関しては、琵琶湖湖底での重力測定点数が陸上に比べてきわめて少ないために、重力異常図では東岸湖底断層が現れない可能性は十分考えられる。

今回述べたように重力異常の分布から推定される断層線の位置は、地表の地形や断層露頭から知られている断層線とは大きなスケールでみるならば一致しているが、細かくみるならば微妙にずれている。これは地下10ないし20km
の深さでの断層変異が地表に達するときには、必ずしもその直上部に現れないと、地表を覆う岩石ないしは堆積層のために、その両側にずれるためであると思われるならば説明できる。さらにNishida et al.（1990）は琵琶湖の湖盆がいくつかのブロックに分かれていると考えているが、この考えに従うならばこれらの構造線は琵琶湖盆を区切る境界線であると考えることができる。

ブーゲー異常の分布から推定できる断層は、垂直落差がある場合に限られ、もしも断層のずれが水平であるならば、それほど等重力異常線は密にならない。そこでこの琵琶湖北方の地下にはどのような構造を考えたらよいか、モデルを作って考察してみた。

地下構造の推定

Nishida et al.（1990）は琵琶湖周辺の重力異常の解釈として、次のようなことを考えた。琵琶湖の中央部にはその周辺の山地に比較するならば、50mgal以上にも達する大きな負異常がある。現在の琵琶湖底の堆積物及びその周辺の盆地を埋める第四紀堆積物の密度では、このような大きな異常は説明できない。Horie and Tanaka（1983）は琵琶湖の堆積層の厚さをアガラで探査し、その結果もっとも深いところでも堆積層は1200mを超えないことを報告している。Nishida et al.（1978）は竹生島、多景島での重力測定値と湖底の重力測定値の比較から、琵琶湖底の堆積物の厚さはもっとも厚いところでも1,000m前後ではないかと推定している。

湖底堆積物と周辺の山地の基盤岩の密度差を0.6gr/cm³と仮定するならば、説明できる重力異常は約25mgalである。すると残りの負異常はより深いところにその原因を求めねばならない。

また琵琶湖の負異常は北湖から敦賀にのびることが広域重力異常図（Gravity Research Group in Southwest Japan, 1994）から指摘されている。この異常帯はその波長が大きいことから、地下水脈にその原因を求めねばならない。松浦・他（1985）はこの低重力異常帯が、敦賀からさらに日本海の沖60kmにまで延びていることを指摘している。彼らはこのような低重力異常帯が、地下深部での地殻の落ち込みでしか説明できないと考えた。Nishida et al.（1990）は琵琶湖の北は、日本列島の東西圧縮応力のもとで地殻下部が沈降したため、ないしは破砕された低密度の物質からなると考えた。

図4には北緯35°25′での重力異常断面を示す。ここで矢印のC, D, F,
はそれぞれ図2の花折断層（C-C'）、饕庭野・酒波断層（D-D'）、F-F'の重力異常の急変部に応答する構造線である。

琵琶湖からその西側に向かって重力異常は急激に増大するが、琵琶湖から東に向かってはその増大の割合はゆるやかである。花折断層の周辺では基盤岩の断層面が認められることから、湖西の堆積層はそれほど厚くないと考えなければならない。一方湖東においては山岳帯の断層で基盤岩が認められることからも、それほど厚い堆積層を考えることはできない。

重力異常から地下構造を考えるとき、通常は地下の基盤深度のわかつているところを探し、そこででの深度を束縛して解析を行うという手法を用いる。ここではHorie and Tanaka (1983)によって与えられた琵琶湖底の堆積層の厚さ分布図を利用して、図4のもっともブーゲー異常の低いところでの堆積層の厚さを800mと仮定して解析を進めることにする。

次に地下深部の構造であるが、琵琶湖底の基盤をなす地殻がその両側に対して落ち込んでいるというモデルを採用するならば、ここには南北に走る断層構造を仮定しなければならない。この断層構造は湖西の比良・野坂山地に対して琵琶湖盆が落ち込むものと、湖東の鈴鹿山地に対して琵琶湖盆が落ち込む断層が考えられる。湖西に推定できる断層傾斜は、その西側の比良山塊が琵琶湖盆に対して大きく隆起していることからもかなり大きいと推定される。これに対して東側に向かってどちらかというならば緩やかに重力異常が
増加するのは湖東には複数の断層があると考えることで説明できる。この場合でいうならば F-F' の南北の境界、及び柳ヶ瀬断層のような平行な構造があり、そのために緩やかな重力異常の変化のパターンができると考えられる。

地下深部にこのような断層が存在するならば、地表面においてどのような重力異常のパターンが推定できるかをあらかじめ計算してみた。図 5 に地下深度 z km に段差 4 km の断層があるモデルを示す。普通地表面でみられる地殻の岩石の平均密度は 2.7 gr/cm³ であるが、地下深部では圧密及び組成変化のために密度は増大する。この変化が不連続であることが地震探査などの結果からも知られている。ここで推定される不連続面での密度差を 0.2 gr/cm³ と仮定する。このとき地表での重力異常の変化を Talwani et al. (1959) の方法を用いて深さ z を変化させて計算してみた。その結果を図 6 に示す。

図 6 には z = 1, 2, 3, 4 km に対応する重力異常のパターンを示す。この結果から密度が大きくなくなるに従って、重力異常の変化は緩やかになり、かつその波長が長くなることが指摘できる。ここでいくつかのパターンを計算することにより、湖西の重力異常の断面にもっともよくあうモデルを求めるならば、湖西では密度不連続面の深さが 1.5 km で断層落差が 3.5 km のときにもっともよくあうことが確認できた。密度不連続面の深さは湖盆の地下では大きく変動しないと考えられるので深度 6 km で水平な密度不連続面を考えた。湖東の重力異常の急変部ではでは F-F' に南北に落差約 2 km の断層を考える。
図6

図5に示されるような地下構造を仮定したときに地表で観察される重力異常断面 密度不連続面の深度を \(z = 1, 2, 3, 4 \) kmと変化させるならば、深度を深くするに従って重力異常変化は緩やかかつ広範囲になる。密度差は 0.2 gr/cm\(^3\)と仮定した。

ならば全体がきわめてよく一致することが認められた。図7にはこのように推定された地下構造の断面を示す。

さらに地下にこのような断層落差を仮定することによって、重力異常の長波長成分を除去した残差から第四紀堆積層の厚さを見積もってみた。図の結果では堆積層と基盤岩のの密度差を、0.5 gr/cm\(^3\)と0.45 gr/cm\(^3\)の2通りを仮定してある。この堆積層の厚さは Horie and Tanaka (1983) によって与えられ、湖底の基盤深度の推定結果とよく一致する。

図7

琵琶湖の西岸と東岸に断層を仮定したときの北緯 35° 25' の断面での地下構造 C, D, F は図4に対応する重力異常変動部である。
結論

滋賀県北部の琵琶湖を中心とした負の重力異常は、湖底の堆積物の低密度のみでは説明できないことはかねてより指摘されていた。北緯35°25′の東西の重力異常の断面を用いて、どのような地下構造を仮定するならば、負の重力異常を説明できるか推定してみた。その結果琵琶湖の西岸と東岸に南北の垂直落差を仮定するならば、重力異常の断面にもっとともよく合う事が確認できた。さらにこの垂直落差を生じた地殻下部の密度不連続面の境界を、あまり深く仮定することはできないことも指摘できるだろう。

参考文献

活断層研究会, 1980, 日本の活断層, 東京大学出版会, 東京
活断層研究会, 1991, 新編日本の活断層, 東京大学出版会, 東京

西田潤一, 1992, 滋賀県西北部近江今津町北の活構造について, 大谷学報, 70巻 1-16.

松浦良彦・安田誠二・河野芳輝・西田潤一, 1985, 琵琶湖から教賀半島沖にのびる
Mogi, I., I.Katsura and S.Nishimura, 1991, Magnetotelluric survey of an active fault system in the northern part of Kinki district, south-west Japan, Jour. Structural Geol., 13, 235-240.

(本学教授 物理地質学)